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EXECUTIVE SUMMARY

In this report we discuss the detection performance of a variety of higher order
spectra for a variety of signals. Of particular significance is the introduction of a new type

of higher order spectra called nonstationary higher order spectra. Nonstationary higher
order spectra are not the stationary higher order spectral representations of nonstationary
processes, but are in fact different spectra which contain the stationary higher order spectra
as a subset of their domain. It is shown quantitatively through theoretical predictions and
simulations that these type of spectra perform better at detecting nonstationary signals than
do the traditional stationary spectra. For the first time, small sample statistics have been
derived and applied to the detection performance rather than asymptotic statistics, resulting
in a more accurate performance prediction for typical sample sizes.

The use of cross power spectrum and auto power spectrum to detect narrowband

signals is examined first. Even though the cross and auto power spectra are not higher
order spectra, the issue addressed here is whether or not cross-channel processing can
increase detection performance commensurate with higher order spectral processing. In an
incoherent noise field, the cross power spectrum of the noise asymptotically approaches
zero, so it should achieve some processing gain over auto power spectrum processing for
narrowband signals. However, it is shown that if the cross power spectrum is applied to
the half beams of a towed array and the auto power spectrum is applied to the full beam of a
towed array, then in an isotropic noise field the cross power spectrum actually performs
about 1 dB worse than the auto power spectrum. This result is due to the fact that the noise
levels in the half beams are approximately 3 dB more than the noise level in the full beam
due to the decreased directionality of the half beams. Thus cross power spectrum
processing does not result in improved detection performance over the auto power

spectrum.

Having determined that cross-channel processing does not result in any detection

gains for certain sensor systems of interest to the Navy, we then restrict our attention to
single channel processing and examine the detection performance of the auto power
spectrum compared to various auto higher order spectra. We consider the case of
narrowband detection when two harmonically related narrowband components are present.
Higher order spectra are designed to detect distinct frequency components that are
coherently related. Two narrowband harmonics can be considered as a specific case of a
cyclo-stationary process, so we first examine the detection performance of the



nonstationary power spectrum, which is related by a simple transform to the spectral

correlation. We derive correctly for the first time the small sample density function for the

magnitude of the spectral correlation and use this function to predict the probability of

detecting a pair of harmonically related narrowband components as a function of signal to

noise ratio at a specified false alarm rate. We show that the spectral correlation will

perform significantly better than the power spectrum, but that it is necessary to use the

unnormalized spectral correlation rather than the normalized spectral correlation to achieve
this improvement. In addition, we examine the detection performance of the bispectrum
and show that it also performs better than the power spectrum when the unnormalized

bispectrum is used.

We also consider the case of finite duration (transient) signals and compare the

detection performance of the spectral correlation (nonstationary power spectrum) and

stationary power spectrum. We derive for the first time the small sample density function

for the spectral correlation when the transient signal is considered to be a single

deterministic (but unknown) waveform. In this case the spectral correlation also performs

better than the power spectrum.

In summary, we show that when we wish to detect nonstationary signals such as

harmonically related narrowband components or finite duration transients, our newly

defined nonstationary higher order spectra perform better at detecting these nonstationary

processes than do stationary spectra. In this report the gains we have demonstrated have

been based on very simple processing procedures. More appropriate processing

procedures can be developed that will result in even more processing gain than has been

demonstrated here.



1. HIGHER ORDER SPECTRAL ANALYSIS

1.1 INTRODUCTION

In this report we discuss the detection performance of a variety of higher order

spectra. Of special significance is the introduction of nonstationary higher order spectra

and their application to detection of nonstationary signals. In this section we introduce new

terminology: polyspectrum refers to a stationary higher order spectrum and cumulant

spectrum refers to a nonstationary higher order spectrum. This terminology, first

suggested by Melvin Hinich, is contrary to convention, in which polyspectrum and

cumulant spectrum are used interchangeably, but this distinction appears to be a natural one

when the concept of nonstationary higher order spectra is introduced.

This first section gives an overview of stationary and nonstationary higher order

spectra from both a functional and a statistical perspective. The functional approach will be

used to define the stationary higher order spectrum, or polyspectrum, and the statistical

approach will be used to define nonstationary higher order spectra, or cumulant spectrum.

Estimation of higher order spectra is discussed, and expressions for several stationary and

nonstationary spectra are given. The following sections demonstrate quantitatively the

detection performance for various higher order spectral estimates.

1.2 THEORY OF HIGHER ORDER SPECTRAL PROCESSING

1.2.1 Cumulant Functions

Higher order spectra of a random process are often referred to as cumulant spectra.
The nth order cumulant function of a J-length vector random process whose components

are Xh(i)(ti), h(i) = 1... J, i = 1 ... n, is defined in terms of the characteristic function of

the random process by

[Xh(1)(tl), .. , Xh(n)(tn)]n =

(j) nl 8In(1(ah(1),l, .. , ah(n),r) | (1.1)
5ah(1),l. • • 8ah(n),n ia ()l.•.hn, =

where the characteristic function is defined as

(ah(),l,.., ah(n),n) = (exp{i(ah(1),lXh(l)(tl) +-. . + ah(n),nXh(n)(tn))}) . (1.2)



The square brackets [ denote the cumulant function. One property of the characteristic
function is that if any subset of the Xh(i)(ti) are independent of the rest of the Xh(i)(ti), then

the characteristic function factors. For example, if Xh(1)(t), .... , Xh(r)(tr) is independent

of Xh(r+l)(tr+l), ).... , Xh(n)(tn), then the characteristic function is

4 (ah(1). .. . ah(n)) = 0(ah(1), . , ah(r))()(ah(r+1), ah(n)) (1.3)

If the characteristic function factors, then the nth partial derivative of the characteristic

function given in Eq. (1.1) is zero and the cumulant function is thus zero. This

demonstrates an important property of the cumulant function: the nth order cumulant

function is nonzero only when there is statistical dependence between the n elements of the

cumulant function.

1.2.2 The Functional Approach to Higher Order Spectra

There are two approaches to the theory of higher order spectra based on cumulants:

the functional approach and the statistical approach. We will discuss first the functional

approach. If the random process Xh(i)(t) is stationary, then there exists a process Zh(i)(O)

with orthogonal increments such that

Xh(i)(t) = etdZ h(i)()) - (1.4)

If the random process is nonstationary, then either the process Zh(i)(co) does not have

orthogonal increments or the kernel function cannot be eit(. In this report we will confine

the functional approach to the case of stationary processes. In this case, the nth order

cumulant of the vector random process is a function only of time differences and can be

written using the spectral representation given in Eq. (1.4) as

[Xh(1)(t), Xh(2)(t+l),..., Xh(n)(t+nl)n
(1.5)

f ... ei(wl+. •--"6))tei((0,T,+. ..4(k-,xin-,)dZ h0)(C0I),.....d Zh(n)(Con)] n

-wo --

The nth order cumulant of the Xh(i)(t) is nonzero only when the nth order cumulant of the

orthogonal increments dZh(i)((O) is nonzero. However, because the increments are

orthogonal, their cumulant is nonzero only if all of the n frequencies are not distinct.

2



Furthermore, because Xh(i)(t) is stationary, its nth order cumulant is independent of t,
which is true in general only for the case co, +... + (On = 0 due to the presence of the

exponential ei(0 1+-- .+wn)t in the integral. This case satisfies the requirement that the n

frequencies not be all distinct. Thus the nth order cumulant of the Xh(i)(t) is

[X h(1)(t), X h(2)(t+'tl). ..... X h(n)(t+'Cn-1)] n =

-"(1.6)
f ...f oi°1Ti+" .+)n.1Tf.1[jdZh(1,(0l) ..... dZh(n(-Co1 -...-(On-1)]n

-C1o -c1o

for co1 +... + (On = 0, and zero otherwise.

If we now define a function Ph(l).....h(n)(Coi .. Con-l) such that

dPh(1),....h(n) (col,... , On-l) = (1.7)
[dZh(1)(O0)) ..... dZh(n-1)(on-1), dZh(n)(-col • -cOn-l)] n,

then if Ph(1),...,h(n) is continuous it can be written as

dPh(1)...,h(nOj,..., Con-l) = Ph(1),...,h(nfo1, .. , Con-1)dCo.. don-1 , (1.8)

and Eq. (1.6) can be written as

[Xh(1)(t), Xh(2)(t+tl) .... , Xh(n)(t+tn-1)] n =

f(O .. +'" "+W)rn:"1)Ph(l), ... h(n)(Co1,- ..... Con-1)dol.. dCon- = (1.9)

-Clo Co

S3n. {ph(1),.....n)(0, (on-01)}

Thus the nth order cumulant of the Xh(i)(t) is the inverse Fourier transform of the
function Ph(l),...,h(n). This function is referred to as the nth order polyspectral density

function of the Xh(i)(t). If the cumulant function is integrable, then the nth order spectral

density function can be written as the Fourier transform of the cumulant function:

Ph(l),....h(n)(Co1 . ., Con-1) = 9n-1{[Xh(1)(t), ... ., Xh(n)(t+'n-1)]nl} . (1.10)

1.2.3 The Statistical Approach to Higher Order Spectra

The previous section has described a functional approach to stationary higher order

spectra, or polyspectra. We will now consider an alternative statistical approach. Given a

3



vector valued discrete time series whose nth order cumulant exists and is finite, then the

nth order discrete Fourier transform of the cumulant exists and we can thus define an nth

order cumulant spectral density function as the nth order discrete Fourier transform of the

cumulant spectral density function:

Ph(1),...,h(n(CD. .... , (On) =

[X h(1)(tl), • • •,. X h(n)(tn)]ne- i ("~t, +.. ,ot+(.]

t1l . .*tf=l ,

Notice that no assumption of stationarity has been made. For this nonstationary case we
refer to the higher order spectrum defined in Eq. (1.11) as the cumulant spectral density

function, and we reserve the term polyspectrum to refer to the stationary higher order
spectrum. This terminology is contrary to convention, in which the terms cumulant

spectrum and polyspectrum are used interchangeably. However, when considering

nonstationary higher order spectra, it seems useful to make this distinction. For the case of
a stationary vector time series, the polyspectrum is defined as (Brillinger, 1975)

Ph(1),...,h(nf 1, -.. (On- ) =

_ (1.12)
[Xh(1)(t) ... , Xh(n)(t+ln.1)]ne- (i + +

Ti;1 . .... 6~n1
= -

1.3 ESTIMATION OF HIGHER ORDER SPECTRA

Brillinger (1975) has shown that if Xh(i)(o) is the finite Fourier transform of the

stationary vector valued discrete time series Xh(i)(t),

N-1
Xh(i)(OW) = I Xh(i)(t) e- imt  (1.13)

t=O

then the cumulant of the finite Fourier transforms is proportional to the nth order

polyspectral density function plus lower order terms:

[Xh(1)()1),Xh(2)(O}2) .... Xh(n)(-(o1-O2...-(On-1)n = Nph(1)....h(n)(OWi,....(On-i)+() 1)
(1.14)

However, this result can be extended to nonstationary processes as well. In this

case, the cumulant of the finite Fourier transforms is proportional to the nth order cumulant

spectral density function plus lower order terms:

4



[Xh(1)(CI)),..., Xh(n)((On)]n = NPh(1) ,....h(n . (On) + 0(1) - (1.15)

For stationary processes, the cumulant spectrum is zero except in the domain for which co,

+... + n  0. Within this domain, the cumulant spectrum is equal to the polyspectrum.

Equations (1.14) and (1.15) form the basis for non-parametric estimation of higher

order spectra that will be discussed in more detail in a later section. For the case of the

bispectrum, see Hinich (1982). Parametric methods for estimating the bispectrum have

also been developed; see, for example, Nikias and Pan (1988). It should be noted that

Eqs. (1.14) and (1.15) demonstrate that, as a result of the independence property of the

cumulants discussed above, the higher order spectrum is zero unless the Fourier transforms

are statistically dependent.

1.4 EXAMPLES OF SPECTRAL DENSITY FUNCTIONS

1.4.1 The Auto and Cross Power Spectrum

The lowest order spectral density function (n=2) is just the power spectrum. For a

zero mean stationary process X(t) the second order cumulant is equal to the second order

expected value:

[X(t),X(t+ 't)]2 =(X(t)X(t+t))= R(t) (1.16)

Equation (1.10) then yields the familiar definition of the power spectrum as the Fourier
transform of the autocorrelation function R(,c). Equation (1.14) yields the expression for

the power spectrum in terms of the expected value of the magnitude squared of the discrete

finite Fourier transform of the time series:

(X(wo)X(-co))= (IX(o))I) = Np(co) + 0(1) (1.17)

For a two-element vector valued zero mean time series the second order cumulant is equal

to the crosscorrelation function:

[Xl(t),X 2(t+T)] 2 = (Xl(t)X2(t+T))= R12 (T) . (1.18)

The cross power spectrum is thus the Fourier transform of the crosscorrelation function

and can be estimated from the product of the discrete finite Fourier transforms of the two

time series:

5



KX (O))X2(-(O))=(Xl(o)X 2(o))= Np12(o) + 0(1). (1.19)

1.4.2 The Nonstationary Power Spectrum: Spectral Correla un

The n=2 cumulant spectrum, which we will refer to as the nonstationary power

spectrum, is related to the expected value of the product of the discrete finite Fourier

transform of a zero mean process by Eq. (1.15):

(X(o 1)X(c02)) = Np(oi ,o02) + 0(1) . (1.20)

The nonstationary power spectrum is zero for o2 * - o)1 if the time series is stationary. For

2 = - co1 it is equivalent to the power spectrum. The nonstationary power spectrum can

be used to detect nonstationary processes by observing non-zero values in the domain for

which w2 * - (01. The nonstationary power spectrum is related to the more familiar

spectral correlation s(Io,o) by the transform

p(,02) = S (1,-02) (1.21)

1.4.3 The Auto and Cross Bispectrum

The next higher order spectral density function (n=3) is the bispectrum. For a zero

mean process the third order cumulant is equal to the third order expected value, so for the

bispectrum Eq. (1.10) simplifies to the two-dimensional Fourier transform of the

bicovariance function:

B(col ,0o2) = !32{(X(t)X(t+ 'E)X(t+T2 ))} . (1.22)

The bispectrum is related to the expected value of the triple product of the discrete finite

Fourier transform by

(X(co0)X((o2)X*(cOl + w2)) = NB(oI,WO2) + 0(1) (1.23)

For a two-element vector valued stationary zero mean time series, the cross-bispectrum is

the two-dimensional Fourier transform of the cross-bicovariance:

B112((Ol ,O)2) = 2{(X, (t)Xl(t+lI )X2 (t+ 2))} . (1.24)

6



The cross-bispectrum is similarly related to the discrete finite Fourier transform of the two
time series by

((01)Xl(o 2)X(o 1 +W2))= NB112(co,0 2)+O(1) . (1.25)



2. COMPARISON OF THE NARROWBAND DETECTION
PERFORMANCE OF THE AUTO AND CROSS POWER SPECTRUM

Sonar systems usually beamform arrays of hydrophones and process the
beamformed signal to perform the initial detection of acoustic sources. Frequently both a
full beam (using the full aperture of the array) and two half beams (each using half the full
aperture of the array) are formed. One can consider performing the detection operation by
either applying auto power spectrum processing to the full beam signal or applying cross
power spectrum processing to the half beam signals. The potential advantage of using the
cross power spectrum is that if the noise is incoherent between the half beams, then the

cross power spectrum of the noise is asymptotically zero. This suggests that the cross
power spectrum may be able to detect signals at lower signal-to-noise ratios than the auto

power spectrum. In this section we will analytically compare the detection performance of
the auto and cross power spectrum to determine if there is any processing gain to be
realized by using cross-channel processing.

2.1. ESTIMATION OF THE CROSS POWER SPECTRUM

The cross power spectrum can be estimated from a discrete Fourier transform
(DFT) of the data. For the discrete time series x(t), t=O, 1, .... , N- 1, the DFT is given by

N-_ -i2njt

X)=11 x(t)e-F, j=O,1,...,N-1 (2.1)
t-O

The frequency associated with the jth component is

fj=J fs, j=O, 1, ... N_.
2 (2.2)

-(N-j) fs,jN 1.,...,N-1

N 2

where fs is the rate at which the time series was sampled. The DFT is typically computed

using an FFT algorithm. Note that Eq. (2.1) differs from Eq. (1.13) by a factor of 1/N,
and thus the following spectral estimates also differ from those in Section 1.

The cross power spectrum is estimated from the DFT by

P12(f) = NXI(j)X 2*(j) (2.3)

9



This estimate is asymptotically unbiased. That is, its expected value approaches the true

value of the cross power spectrum as the sample size (the DFT length N) increases (see

Eq. (1.19)):

120) = P12(fJ) + 0 (N- 1) (2.4)

However, the variance of this estimate does not approach zero as the sample size increases

but rather approaches a constant value that is the product of the two auto power spectra:

VAR (P12) = Pll(f1 )P2 2(fj) + 0 (N") (2.5)

Thus the estimate given by Eq. (2.3) is not a consistent estimate of the cross power

spectrum. For this reason several cross power spectrum estimates are usually averaged in

time to produce a consistent estimate:

L
P12)= NX)(j)X()*(j) (2.6)

Frequency averaging can also be used to produce a consistent estimate. If each individual

estimate is independent, then the averaged estimate is unbiased with a variance that

approaches zero as the number of terms in the average increases:
VARL(P12) =  

1 j(f)P22(fj) + 0 ((LN) 1) (2.7)

Independence of each individual estimate for narrowband processing implies that the DFT

length is matched to the bandwidth of the narrrowband component being detected.

If we define P 12 (fj) such that

PI 2(fj)
P12(f1) = -p i )p 22(fj) (2.8)

then the estimate of Ip 12(fj)l given by

r1 fi l 2(fj)l (2.9)
I2fj =4 110f)P220f)

has a density function given by (Brillinger, 1975)

10



L2 q12 L 2 (fj)IL I120L 2(f( -P12(fi),

r(L)2L- (1 -(P12(f )  V 1  i2) Kt."i (1 2LP12(fJi (1

where I0 is the modified Bessel function of the first kind of order 0 and KL. t is the

modified Bessel function of the second kind of order L-1. Note that this density function is
the corrected version of the one that appeared in Brillinger (1975). The function I1p2(fj)I is

referred to as the coherency spectrum.

2.2 EFFECTS OF NOISE ON THE CROSS POWER SPECTRUM
ESTIMATE

The expected value of the cross power spectrum estimate in the presence of noise is

given by

O, N (fj)) = pS2(fj) + PlN2(fj) + 0 (N1 ), (2.11)

that is, the cross power spectrum of the signal plus noise is asymptotically just the sum of

the cross power spectra of the signal and the noise. From Eqs. (1.10 and (1.19) it can be

seen that if the noise is uncorrelated, its cross power spectrum will be zero. Thus

uncorrelated noise asymptotically has no effect on the estimate of the signal's cross power

spectrum. If the noise is correlated, it can bias the estimate of the signal's cross power

spectrum.

The variance of the cross power spectrum estimate in the presence of noise is given

by

VAR (p LN (fj)) = -(pf, (fj) + pN (fj))(pJ 2 (fj) + pN(f1 )) + 0 ((LN) "1)L 1(2.12)

= -pS,(fi)p 2 (fi)(1 +rll (f.))(1 +r2(fi) ) +O((LN) "')

where rI 1(fj) is the signal-to-noise ratio at the frequency fj defined as the ratio of the signal

power at fi to the noise power at fj:

Pl i (f) (2.13)

and similarly for r2 2(fj). The variance is linearly proportional to the inverse of the

averaging time L, i.e., the variance reduces linearly with an increase in the averaging time.
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For low signal-to-noise ratios the variance is approximately quadratically proportional to
the inverse of the signal-to-noise ratio (assuming that r, 1(f) and r22(fj) are approximately

equal). Thus if the signal-to-noise ratio decreases by 3 dB (1/2), the variance increases by

approximately a factor of 4, which can be compensated for by a four-fold increase in the

averaging time.

The cross power spectrum can be used to provide an improved estimate of the auto

power spectrum of a signal in the presence of noise. If the noise is uncorrelated, then from
Eq. (2.11) it can be seen that the expected value of the cross power spectrum of signal plus

noise is just equal to the cross power spectrum of the signal. From Eq. (2.8) it can be seen
that the cross power spectrum of the signal is related to the auto power spectrum of the

signal by the coherency spectrum:

0 2(f) = p 2(fj)P(f)p 2(f) (2.14)

where the approximate equality in the above expression assumes that the signal auto power
spectra of the two channels are the same. If the signal of interest is completely coherent
(the magnitude of P 12 is 1), then the magnitude of the cross power spectrum of the signal

plus noise is asymptotically equal to the auto power spectrum of the signal only. If the

signal is only partially coherent, then the magnitude of the cross power spectrum is related

to the auto power spectrum by a scale factor that is dependent on the coherency of the

signal.

2.3 COMPARISON TO THE AUTO POWER SPECTRUM

If the auto power spectrum is estimated in a manner similar to the cross power

spectrum:

L

5(f 1 I NX(')()X()*cj) ,(2.15)

then the expected value of this estimate in the presence of independent noise is

(pS+N(f,)) = pS(fj) + pN(fj) + 0 (N-') , (2.16)

and the variance of the estimate is
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VAR (S+N(fj)) = l_(p(fj) + pN(fj)) 2 + 0 ((LN) " )

= LpS(fj))2(l +r(fj))2 + 0 ((LN)"')

The density function of the auto power spectrum estimate given by Eq. (2.15) is
p(fj)X22L/2L, where X22L is a chi-square distribution with 2L degrees of freedom. In

contrast to the cross power spectrum, the estimate of the signal content of the auto power
spectrum is always biased by the presence of noise, even when the noise is uncorrelated.

We now wish to compare the narrowband detection performance of the magnitude

of the cross power spectrum computed from the two half beams of a line array and the auto

power spectrum computed from the full beam of a line array. Detection is performed with
waterfall displays of the auto power spectrum and magnitude of the cross power spectrum.
In qualitative terms, a detection occurs when a frequency bin in the waterfall display

consistently has an amplitude that is noticeably larger over time than the amplitudes of the
neighboring frequency bins. Detection is affected by both the amplitude of the signal in the

frequency bin compared to the amplitude of the noise in neighboring frequency bins and the
variation of the noise amplitudes in the neighboring frequency bins. If the noise spectrum

has large variations over time in the neighborhood of the signal of interest, it can mask the
presence of a low level signal. As the variation of the noise amplitudes decreases, it is

possible to detect the signal at lower signal amplitudes. Thus detection of narrowband

signals with waterfall displays is determined by both the expected value of the signal and
noise amplitudes and the variance of the noise.

A detection is said to have occurred when an estimate exceeds a threshold that is
determined by the desired false alarm rate. For the auto power spectrum estimate given by
Eq. (2.15), the noise only case results in a density function given by pN(fj)X2

2 L/2L, where
pN(fj) is the auto power spectrum of the noise from the full beam of the line array. If a

threshold T(a) is determined from the chi-square distribution for a specified false alarm
rate a and degrees of freedom 2L, then a detection is said to have occurred when the auto

power spectrum estimate exceeds the threshold given by pN(fj)T(a)/2L.

The probability of detection is the probability that the auto power spectrum estimate
will exceed this threshold when a signal is present in addition to the noise, and is dependent

on the signal-to-noise ratio. When a signal and noise are present, the auto power spectrum
estimate has a density function given by (r(fj)+1)pN(fj)X2

2 L/2L, where r(fj) is the ratio of

the signal power to the noise power from the full beam of the line array. The estimate
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9 +N (fj) exceeds the threshold pN(fj)T(a)/2L when 2Lps+ (fj)/(r()+l)pN(fj) exceeds the

value T(c)/(r(fj)+l). Since 2Lps+N (fj)/(r(fj)+1)pN(fj) is distributed X22L , the probability

of detection is the probability that a chi-square 2L random variable exceeds the value

T(a)/(r(fj)+ 1).

If the auto power spectrum is estimated as the magnitude of the cross power

spectrum, then the density function for the magnitude of the cross power spectrum is given

from Eq. (2.10) as

,L( -2 ' lz(fj)j L P12 j2 411)P20 L2P12(fj) p2fi

-/Pi 1(fj)p 22(fj) r(L)2L-1 (1 - IP'2(fj)f2) (IQ6P iif0) 22(f1) (1 - IP12(f)if)) (2.18)

X KL., q _ iP12 (fj 2)

where Eq. (2.9) was used to relate the coherence to the cross power spectrum. It is

assumed that a consistent estimate of the auto power spectrum of the two half beams is

used so that asymptotically the estimates can be replaced by the population values. For the

case that (1) the noise is uncorrelated between the two half beams (pN12(fJ) = 0), (2) the

auto power spectrum of the noise is the same on the two half beams, and (3) the half beam

noise auto power spectrum is approximately twice the full beam noise auto power spectrum
( pN1 1(fj) = pN22 (fj) = 2pN(fj) ) due to the different directivity of the full and half beams

(assuming isotropic noise), the density function of the magnitude of the cross power

spectrum of the noise given by Eq. (2.18) reduces to

1 kL( Nf) )'l'KL.11j~)i (2.19)
pN(fj) F(L)2L-1

From this density function a threshold can be determined for the magnitude of the cross

power spectrum that will achieve the desired false alarm rate.

When both signal and noise are present, the coherency spectrum of the signal plus

noise is determined by the coherence of the signal, the coherence of the noise, and the

signal-to-noise ratio. If the signal is perfectly correlated between the half beams, the noise

is uncorrelated, the signal auto power spectrum in the half beams is the same as the signal

14



auto power spectrum in the full beam (assuming a directional source), and the noise auto

power spectrum in the half beams is approximately twice the noise auto power spectrum in

the full beam, then applying Eqs. (2.8) and (2.14) results in the magnitude of the

coherency spectrum of the signal plus noise equal to r(fj)/(r(fj)+ 2 ). Under these

assumptions, from Eq. (2.18) the density function of the magnitude of the cross power

spectrum of signal plus noise is
L2)N(f) .L t ,.~f~ (f)

L(fq)+ ) 2IL r(f ]
rfj)+ 2[N(fj) + 2((r(f~) + 2)pN(fj) I() L1 r(fj) 2] (r(fj) + 2)pN(fj) r(f1) J2

x L1( Lf2-sN y f)I +2))-(2.20)
xr ( f ) 2(rf)+ 2)pN(fj)[1 -r(fj) + 2)J

From this density function the probability of detection can be computed as a function of

signal-to-noise ratio.

Shown in Fig. 2.1 is the probability of detection as a function of signal-to-noise

ratio for the detector based on the auto power spectrum estimator given by Eq. (2.15). The

probability of detection is given for four different averaging lengths L. For the detector

based on the magnitude of the cross power spectrum, the probability of detection as a

function of signal-to-noise ratio is shown in Fig. 2.2. A comparison of the probability of

detection of the auto and cross power spectra is shown in Fig. 2.3. As can be seen, the

cross power spectrum requires about a 1 dB higher signal-to-noise ratio than the auto

power spectrum to achieve the same probability of detection over a range of signal-to-noise

ratios and averaging lengths.

Some insight into the detection performance of the cross power spectrum can be

gained by examining the asymptotic distribution of the cross power spectrum. As the

number of averages increases, the cross power spectrum estimate given by Eq. (2.6) has a

density function that approaches a complex normal density with mean and variance given

by Eqs. (2.4) and (2.7) (Brillinger, 1975). Thus the magnitude of the cross power

spectrum has an asymptotic Rician density function given by (Papoulis, 1965)

2 ,2(fj) ex -LjrP,2(fj)j 2 + Ip12(fj ]2  2 r I' P2 (fjJ (2.21

P11 (fj)P 22(fj) ' p11 (fj)p22(f0) J' p11(fj)p 22 (fj) ) (2.21)
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For the case of noise only, where the noise is uncorrelated and the noise power in the two

half beams is approximately equal and twice the noise power in the full beam, then this

density reduces to a Rayleigh density given by

Lr1i2(fj) ,D-- 12(fj1 (2.22)

2(pN(f1))2  4(pN(fj))2

For the signal plus noise case, Eq. (2.21) becomes

2L WP1(f)l ex.-Lf {rpj12 + (pN(fj)) 2r2 1(2 Ll, 2 (fj) pN(fj)r(fj)(.
(pN(f)) 2(r(fj) + 2)2 " (pN(fj)) 2(r(fj) + 2)2 (pN(f)) 2(r(j) +-2)" (2.23)

Under the condition that

L >> (2 (2.24)

that is, when the number of averages L is large ("large" being determined by the signal-to-
noise ratio), then Eq. (2.23) has approximately a Gaussian form (Levanon, 1988):

-exp [ 2L(p(f1) - pN(fj)r(fj)) 2 ] (2.25)f2npN(fj) (r(fj)+2) 2(pN(f)fj)+) _ '

Using these asymptotic densities, the asymptotic mean and variance of the cross

power spectrum estimate under both noise and signal plus noise conditions can be

compared to the same quantities for the auto power spectrum. This comparison is given in

Table 2.1. From a qualitative standpoint, there are two factors that can be seen to reduce

the detection performance of the cross power spectrum compared to the auto power

spectrum. First, the expected value of the cross power spectrum when noise only is

present decreases to zero rather slowly as the number of averages increases, going as L-1/2.

The separation in the means of the cross power spectrum densities in signal plus noise and

noise only cases is at most equal to the signal power spectrum. However, the separation in

the means of the auto power spectrum densities is also equal to the signal power spectrum,

but independent of the averaging length. Qualitatively, the more an estimate's noise and

signal plus noise densities are separated in mean, the better the detection performance. In

the case of the cross power spectrum, its means are never separated more than the means of

the auto power spectrum. Thus the fact that the cross power spectrum asymptotically goes
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to zero for the noise only case does not improve its asymptotic detection performance

compared to the auto power spectrum.

TABLE 2.1

COMPARISON OF AUTO AND CROSS POWER SPECTRUM
ASYMPTOTIC MEAN AND VARIANCE

Auto Power Spectrum Asymptotic Cross Power Spectrum

M n Variance Variance

Noise Only pN(fj) (pN(fj) pN(fj 2L- (4-E)PPL qB-L

(rf(p~N N(f.))2 (r(fj).l)2 (oNfjf!))2 (r(fj)+2)2

Signal-Plus-Noise (rh)+ )pN(fJ) L PNQf)r(f1) L 2

Secondly, the asymptotic variance of the cross power spectrum under the noise

only case is only slightly smaller than the variance of the auto power spectrum for noise
only, which implies that qualitatively the thresholds necessary to achieve a specified false

alarm rate are going to be approximately the same. However, the variance of the cross

power spectrum for the signal plus noise case is approximately twice as large as the
variance of the auto power spectrum of the signal plus noise for low signal-to-noise ratios.

Usually, the smaller the variance of an estimate's signal plus noise density, the better the
detection performance. This larger variance for the signal plus noise density of the cross

power spectrum is due to the fact that the noise power in the half beams is assumed to be
twice as large as the noise power in the full beams. It is only at large signal-to-noise ratios,
when this factor is insignificant, that the cross power spectrum has a smaller variance than

the auto power spectrum. If the noise power in the half beams were the same as the noise

power in the full beam, then the cross power spectrum would have a variance that is one
half the variance of the auto power spectrum, which would result in better detection for the

cross power spectrum. As it is, the larger variance of the cross power spectrum estimate at
low signal-to-noise ratios results in reduced detection performance compared to the auto

power spectrum estimate.
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Shown in Fig. 2.4 is a comparison of the asymptotic detection performance of the

auto and cross power spectrum for 1000 averages (L=1000). Even in this asymptotic limit,

the auto power spectrum is still performing better than the cross power spectrum.

As a further example of the detection performance of the auto and cross power

spectrum, a single narrowband tone was added to uncorrelated noise and fed to the auto

and cross power spectrum estimators. For the cross power spectrum the noise is at the

same level and independent on the two channels and the same tone is fed into both

channels. The power spectrum and the magnitude of the cross power spectrum are shown

for different numbers of averages in Fig. 2.5. It should be pointed out that the noise

processed by the power spectrum is at the same level as the noise processed by the cross

power spectrum, not 3 dB lower as would normally be the case when the signals are

derived from full and half beam outputs. Thus a more accurate comparison would be to

compare the power spectrum performance for a given number of averages to the cross

power spectrum performance for one-fourth as many averages.

It can be seen that as the number of averages is increased, the expected value and

variance of the magnitude of the cross power spectrum decreases, resulting in noise values

that are consistently closer to zero. This results in better detectability of the narrowband

component. On the other hand, the noise variance (but not the expected value) of the auto

power spectrum is also decreasing as the number of averages increases, resulting in noise

values that are consistently closer to their non-zero value. The reduction in the variance of

the auto power spectrum estimate also results in better detectability of the narrowband

component, even though the noise is non-zero.

The conclusion of this analysis is that even though the cross power spectrum

improves the estimate of the amplitude of a narrowband signal, it does not necessarily

improve the detectability of that signal due to the increased noise level in the half beam

channels compared to the full beam channel. The effects of this increased noise level on

detectability can be overcome by increasing the averaging length, but increasing the

averaging length also improves the detectability of the auto power spectrum. The cross
power spectrum provides a less biased estimate of the narrowband signal than the auto

power spectrum, but the auto power spectrum provides a slightly better detection of the

narrowband signal.
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It should also be pointed out that this analysis did not take into account the effects
of visual recognition differential on the detectability of the narrowband component. A more
detailed study could indicate the effects of the cross power spectrum on visual recognition

differential.
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3. COMPARISON OF THE DETECTION PERFORMANCE OF THE
POWER SPECTRUM AND SPECTRAL CORRELATION

In Section 2 we demonstrated that there was no processing gain to be realized by

cross-channel processing for half-beam sensor systems that have reduced directionality in

an isotropic noise field. In Sections 3 and 4 we will consider processing only a single

channel such as the output from a full beam beamformer, but we will examine the detection

gains that may be realized using higher order spectral processing. In this section we will

focus on the spectral correlation, and in Section 4, on the bispectrum. This analysis will

concentrate on nonstationary processes. One type of process will be a cyclo-stationary

process composed of the sum of narrowband harmonics, and the other will be a finite

energy process representing transients. We will compare the detection performance of the

power spectrum and the spectral correlation (nonstationary power spectrum) for these two

types of processes to determine if using a nonstationary spectrum provides any

improvements in detection of nonstationary processes. Similarly to the case of the cross

power spectrum, for stationary noise the spectral correlation is zero for distinct frequency

components, suggesting the possibility of detection at lower signal-to-noise ratios than

would be possible with the power spectrum.

3.1 ESTIMATION OF THE SPECTRAL CORRELATION FOR
DETECTION OF NARROWBAND HARMONICS

We will consider two estimates of the spectral correlation, a normalized and an

unnormalized estimate. A normalized spectral correlation estimator based on the discrete
finite Fourier transform (Eq. (2.1)) is given by

S(f1,fj) = L Nx(k)(f)x(k)(fJ) (3.1)
L k = 1 /P (fi)P(f1 )

Normalization is performed by dividing by the square root of the product of the power

spectra at the two frequencies. This estimate is asymptotically unbiased and has a variance

that approaches zero as the number of averages increases:

VAR (S(f,, fj)) = - + 0 ((LN) "') (3.2)
L

The estimate given by Eq. (3.1) has a complex Wishart distribution with

dimension 2 and degrees of freedom L. The magnitude of the normalized spectral

correlation estimator given by Eq. (3.1) has a density function given by (Brillinger, 1975)

33



2L 2 L§(f,fjL I LS(f13fj ISOfiA ) ~ K rI2L(fi~jfI 9 (3.3)
r(L)2L-1 (0 - is O ) '0(i -IS (,fj f)1) ( -IS (foif))

where I0 is the modified Bessel function of the first kind of order 0 and KL. 1 is the

modified Bessel function of the second kind of order L-1. Notice that this is the same

density function as the one for the coherency spectrum given by Eq. (2.10) and is the

corrected version of the one that appeared in Brillinger (1975). For the noise only case
where the noise has zero spectral correlation for fi * fj (stationary noise), this density

reduces to

2 L L (fifjj L  -_ 2 'Stjj(34

(L)2L -1

The threshold required to achieve the desired false alarm rate can be calculated from this

density. The expected value of the magnitude of the normalized spectral correlation

estimate given by Eq. (3.1) for the zero correlation, noise only density given by Eq. (3.4)

is

L F(L) ' (3.5)

and the variance is given by

VAR{JjS(fij, 3K r(LrNL) (3.6)

For the case where we are trying to detect two coherently related narrowband tones,

if the tones are perfectly coherent spectrally (the normalized spectral correlation is one) and

the noise is spectrally incoherent (the normalized spectral correlation is zero), the spectral

correlation of the signal plus noise is given by

9r(fi)r((3)
S(fi, fj)--- (r(fi) + 1)(r(fj) + 1) ' (3.7)

where r(fi) is the signal-to-noise power ratio:

r(fi) = pS(fO) (3.8)pN(fi)
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Thus the density function for the signal-plus-noise case is given by

2LI2LSS (fi'fj1L 1(1 /(S ~f~ r(f j) + 1 ) (r(fj) + 1 rf)Ffi

r(L)2-11 - ( WOW 1(rf) + ((2S'f~j 1)) +rfj
x LI( s+r(fi)+1) r(fj) + f 1 f.)) (3.9)

x K L..1[ _ _ _ _ _ _ _ _ _ _ _ _ _ _

r(fi) + 1)(r(fj) + 1)

The spectral correlation estimate given by Eq. (3.1) is asymptotically complex

Gaussian, so that for large averages its magnitude has a Rician density given by

2LjS(f,, fj exp[-L{S(fi, fS2 +IS(f,, fj 2}] I0(2LS(fi, fjIS(fi, f1 ) (3.10)

For the noise only case where the noise is stationary, the spectral correlation of the noise is

zero for distinct frequencies. In this case the spectral correlation has a Rayleigh density

given by

2 dS(fi, fij exp[-dS"(fi, fjff] (3.11)

In Fig. 3.1 the false alarm rate that would be computed using the Rayleigh density in

Eq. (3.11) is compared to the exact false alarm rate given by the density in Eq. (3.3) for an

averaging length of 10(L = 10). The false alarm rate computed from the asymptotic density

is underestimated compared to the false alarm rate computed from the exact density. Thus a

threshold derived from the asymptotic density would result in a higher false alarm rate than

expected. However, for even this short averaging length, the asymptotic false alarm rate

for false alarm rates on the order of 10-3 is not too different from the exact false alarm rate.

The unnormalized spectral correlation estimate is similar to Eq. (3.1):

L
s(fi,fj) = I I NX(k)(fi)X(k)(fj) , (3.12)

L k-1

where a lower case s is used to denote the unnormalized spectral correlation, and an upper

case S is used to denote the normalized version. The density function of the magnitude of

the unnormalized spectral correlation is given by
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p(f)p(f)F(L)2L"(1- Isf,f1)) p(fjp(f1 ) (i- Is(f,f) (1

40 00(fpf) (i- S (f,, f)))
zP-(j-P( F) r L)2L-( 45 0(1 0 i'M(3.13)

For the noise only case, where the noise is assumed to have no spectral correlation,

the density function is

2 L2Lip(f11 fj) L 2L(1 2 i, f)

,pN(f)pN(f) (L)2L '1  L" p(f)pN(f*) (3.14)

The threshold can be computed for pN = 1, and the threshold for any other value of pN can

be obtained by scaling the pN = 1 threshold by the new value of pN.

For the signal plus noise case the density function for a coherent signal in stationary

noise can be expressed in terms of the signal-to-noise ratio defined in Eq. (3.8) as

2 i 2LsS+N (f,,fJ) L

(r(f,) + 1)(r(fj) + 1)pN(fi)pN(fj)

-(r(fi) + 1)(r(fj) + 1 )pN(f)pN(fj) (L)2L - + 1)(r(fj) + )

1 I2* S+N (f,, fj) ./(r(fi) + 1)(r(fj) + 1) r(fi)r(f1)'] (3.15)
x '2JJ(r(fi) + 1 )(r(fj) + 1)pN(fi)pN(fj) r(fi) + r(fj) + 1

1 2 L-SS+N (f f) )

K. *r~fi + 1 )(r(fi) + 1)pN(f)pN(f,)

(r(fi) + 1)(r(f) + 1)

To calculate the probabilities associated with the densities given by Eqs. (3.14) and (3.15),

the noise power spectrum can arbitrarily be set to 1. In this case the noise only densities

for the normalized and unnormalized spectral correlation, Eqs. (3.4) and (3.14), are

equivalent. However, the signal plus noise densities given by Eqs. (3.9) and (3.15) are
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different. This difference will result in different detection performance for the normalized
and unnormalized spectral correlation, as will be seen in the following.

3.2 DETECTION OF NARROWBAND HARMONICS

We will now compare analytically and experimentally the detection performance of
the normalized and unnormalized spectral correlation and the power spectrum for the
detection of narrowband harmonics in stationary noise. We will first consider the case of
two harmonics of equal amplitude and then the case of different amplitudes. A constant
false alarm rate of 10-3 was used.

Shown in Fig. 3.2 is the probability of detection as a function of signal-to-noise
ratio for the power spectrum and both the normalized and unnormalized spectral correlation
for the case of two harmonics of equal amplitudes and 10 averages (L = 10). A false alarm
rate of 10-3 resulted in a threshold value for the normalized spectral correlation of 0.92.
The spectral correlation results were calculated using the signal plus noise density function
given in Eqs. (3.9) and (3.15), i.e., the Rician approximation for large averages was not
used. As can be seen, the normalized spectral correlation performs significantly worse than
either the unnormalized spectral correlation or the power spectrum. It is also of interest that
the unnormalized spectral correlation provides approximately a 2 dB improvement in
detection performance compared to the power spectrum.

Also shown in Fig. 3.2 are the measured probabilities of detection for two coherent
tones (100 Hz and 200 Hz) in white Gaussian noise, along with their 90% confidence
intervals for the number of observations used. The theoretical thresholds were used, and
the 10-3 false alarm rate with these thresholds fell well within the 90% confidence interval
(±:1. 10-3) of the measured false alarm rates. The measured probabilities of detection agree
well with the theoretical detection probabilities, with the exception that the normalized

spectral correlation is somewhat over-predicted, and confirm the observations that the
normalized spectral correlation performs worse than the power spectrum while the

unnormalized spectral correlation improves upon the power spectrum detection

performance.

Shown in Fig. 3.3 are the same type of results, but with an averaging length of 4
instead of 10. The relative performance of the three types of detectors is the same as for the
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3.3 DETECTION OF A WEAK TONE IN THE PRESENCE OF A
STRONGER HARMONIC

Now consider the case where a strong tone is present and we wish to detect a

weaker tone which is harmonically related to the strong tone. We will start with the

unnormalized spectral correlation estimate given in Eq. (3.12). The density function is the

same as in Eq. (3.13), but now we need to consider the stronger tone as part of the noise
we wish to discriminate against. That is, we are not interested in the detection of the

stronger tone, but in the detection of the weaker harmonically related tone in the presence of

the stronger tone. In this case the density function for noise only is a modified version of

the noise only density function given by Eq. (3.14):

21 2L.9(fif,) L
(r(ti) + 1)pN(f)pN(ft)- KL1 2L(fijf) (3.16)

J(r(fi) + 1)pN(Fi)pN()r(L)2LL (r(f) + 1 )pN(fi)pN( 1)D

In Eq. (3.16) it has been assumed that the stronger tone is at the frequency fi, so the
"noise" at the frequency fi is the sum of the background noise power denoted pN(f i) and the

signal power of the stronger tone. The signal power of the stronger tone is included in the
signal-to-noise ratio term r(fi). The result of this modified noise density function is a larger

threshold than would be obtained by the noise density function given by Eq. (3.14). The

signal plus noise density function is the same as the one given by Eq. (3.15), so it is to be

expected that the detection performance would be worse than the detection performance

obtained previously for the unnormalized spectral correlation.

Shown in Figs. 3.4 and 3.5 are the performance of the unnormalized spectral

correlation for detecting a weak tone in the presence of a stronger harmonic compared to the

performance of the power spectrum for detecting the weak tone. Figure 3.4 contains the

results for an averaging length of 4, and Fig. 3.5 corresponds to an averaging length of 10.

In both these figures the signal-to-noise ratio for the stronger harmonic is 10 dB. For four

averages the spectral correlation performs slightly better than the power spectrum only at

signal-to-noise ratios below about 3 dB. However, for ten averages the spectral correlation

performs better than the power spectrum at signal-to-noise ratios below about 5 dB.

Furthermore, there is increased gain at low signal-to-noise ratios compared to the case of

four averages. In both averaging cases there is more gain from spectral correlation at lower

signal-to-noise ratios than at higher signal-to-noise ratios. Figure 3.6 shows the gain of the
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spectral correlation compared to the power spectrum for three different averaging lengths

for a signal-to-noise ratio of -4 dB for the weak tone and 10 dB for the stronger harmonic.

The gain is the amount the signal-to-noise ratio must be increased in order for the power

spectrum to have the same probability of detection as the spectral correlation. As can be

seen, the gain increases as the averaging length increases.

3.4 DETECTION OF TRANSIENTS USING THE SPECTRAL
CORRELATION AND POWER SPECTRUM

We will now turn our attention to finite duration signals, or transients, and compare

the detection performance of spectral correlation and power spectrum against transients in

white Gaussian noise. We will treat our transient signal as a single deterministic event

rather than as an ensemble of random events since that is how transient processing is

usually performed (i.e., no ensemble averaging). We will then determine the density

functions of the spectral correlation and power spectrum for this signal plus noise case.

We will first consider the density function of the power spectrum estimate. The

power spectrum is estimated as in Eq. (2.15), but with no time averaging (L=1). For a

deterministic signal that has a Fourier transform, the expected value of the power spectrum

estimate given by Eq. (2.15) is

Cp(fj)) = pN(fi) + N- es(fi) + 0 (N-') , (3.17)

where eS(fj) is the energy spectrum of the signal given by

eS(fi) = NIXs(f)j2 , (3.18)

and XS(fj) is the N point DFT of the deterministic signal given by Eq. (2.1). For transient

detection it is more appropriate to consider the detection statistic as the power spectrum

estimate normalized by the known (or estimated) noise power spectrum:

2P(fi) (3.19)
pN(fj)

The normalized power spectrum estimate given by Eq. (3.19) is distributed X2
2 (k), where

22(k,) is a non-central chi-square distribution with 2 degrees of freedom and non-centrality

parameter X. The value of X is given by
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X(fi) = 2 =eS(f) 2 r(fi) , (3.20)pN(f1)

where

r(fi) = N'es(fj) (3.21)
pN(fj)

is the signal-to-noise ratio. Thus if a transient is considered a deterministic signal, the

probability of false alarm for the normalized power spectrum can be computed from a

central chi-square distribution and the probability of detection as a function of signal-to-

noise ratio can be computed from a non-central chi-square distribution.

Just as we normalized the power spectrum estimate by the noise power, we will
also normalize the spectral correlation estimate by the noise power. In this case the
normalized spectral correlation estimate for transient detection is

NX(fi)X*(fj) (3.22)SOO~f) = W/59p1f)pN U. (.22

For a deterministic transient, this estimate has a non-central complex Wishart distribution of

dimension 2 with one degree of freedom. The magnitude of this estimate has a density
given by (Baugh and Hardwicke, 1991)

S1fi, f y: l "(if)+) f'( y 02 jS(fi, fjIj-; 1) I(2 y, y , (3.23)

~fJI e- 4AN+ (rS(fi~k~Y) 2+ Y2) j),y,(.3

where in this case the noncentrality parameter X(fi) = r(fi). Under the noise only case the

estimate has a central complex Wishart distribution of dimension 2 and its magnitude has a

density given by Eq. (3.3) with L=1.

Shown in Fig. 3.7 is a comparison of the probability of detection of spectral

correlation and power spectrum as a function of signal-to-noise ratio for a false alarm rate
of 10

-4 .  In this case the signal is considered to be a transient whose energy is equally

divided between two trequency bins and is zero elsewhere. The spectral correlation result

represents the result from the spectral correlation computed for these two frequency bins.
The power spectrum result represents the result of detecting the transient in either of the

51



1.0 - - -0-

z "o 00 01
= f/

0_. 0.8 - -
C, /j
w
I. 0.6
SI

LI.
0J

0.0.

0.0(

0 0.2- -

0.0 -1- ---

2 4 6 8 10 12 14

SNR -dB

POWER SPECTRUM
------ SPECTRAL CORRELATION

FIGURE 3.7
COMPARISON OF POWER SPECTRUM AND

SPECTRAL CORRELATION TRANSIENT DETECTION PERFORMANCE

ARL - UT
AS-91-132
GRW/RFO

.52 5-13-91 50



two bins. As can be seen, the spectral correlation has a little over a I dB detection

performance gain compared to the auto power spectrum. This simplistic example is meant
to demonstrate only that the use of a nonstationary spectrum can result in more processing
gain against a transient than the use of a stationary spectrum. Additional methods for
processing the spectral correlation can result in even more gains (Baugh and Hardwicke,
1991).
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4. COMPARISON OF THE DETECTION PERFORMANCE OF THE
POWER SPECTRUM AND BISPECTRUM

In this section we will examine the performance of the bispectrum for detecting
narrowband harmonic components and compare its performance to the power spectrum.
We will not examine the nonstationary bispectrum, but will restrict the harmonic
components so that they lie within the region of the stationary bispectrum, which is a sub-
set of the region of the nonstationary bispectrum. The results of this analysis can be
applied in general to the nonstationary bispectrum. First we will describe the bispectrum
estimate and then specify its density function. As with the spectral correlation, we will
consider both a normalized and unnormalized bispectrum estimate.

4.1 ESTIMATION OF THE BISPECTRUM

A consistent estimate of the unnormalized bispectrum can be constructed using a

DFT (Eq. (2.1)) of the time series. The expected value of the complex function

F(j,k) = N2 X(j) X(k) X*(j+k) (4.1)

is equal to the bispectrum B(fj,fk) plus terms on the order of N- 1. Thus F(j,k) is an

unbiased estimate of the bispectrum. However, it is not a consistent estimate of the

bispectrum because its variance increases with N. To obtain a consistent estimate, either

the function F(j,k) can be coherently averaged in frequency, or multiple realizations of
F(j,k) can be coherently averaged in time, or both. For the case of detection of narrowband

harmonics, averaging in time is preferred over averaging in frequency.

The time averaged bispectrum estimate is given by

L
B(j,k) =1 Fi(j,k) , (4.2)

L j=1

where L is the number of DFTs over which the bispectrum is coherently averaged. If the

function given by Eq. (4.1) is uncorrelated in time, then the variance of this estimator is

given by

VAR B(j,k) = P(f) PQ( P(fi+k) + 0 (4.3)

where P(.) is the power spectrum of the time series.
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The estimator of the bispectrum given by Eq. (4.2) is an element of a complex

Wishart with dimension 3 and degrees of freedom L. Asymptotically it has a complex

Gaussian distribution.

The bispectrum can be normalized to produce a quantity whose asymptotic statistics

can more easily be calculated. Since the asymptotic distribution of the estimator given by

Eq. (4.2) is complex Gaussian, the distribution of the normalized bispectrum given by

X2(j,k) = 21B(jk)12 (4.4)
VAR Ba,k)

is asymptotically noncentral chi-square with two degrees of freedom and noncentrality

parameter

.(j,k)=Z.Ly(fjfk) (4.5)

N

where

(ffk IB(f, fk)12  (4.6)
, k) P(fj) P(fk) P(fjk)(

is called the skewness function. If the time series is Gaussian, its skewness function will

be zero for all frequency pairs and the distribution of the normalized bispectrum is just a

central chi-square with two degrees of freedom (the noncentrality parameter will be zero).

For perfectly coherent narrowband harmonics, the skewness function is equal to N, the

DFT size.

4.2 DETECTION OF HARMONIC COMPONENTS USING THE
BISPECTRUM

For the detection of signals in the presence of additive Gaussian noise, the

threshold T(a) that would be applied to the normalized bispectrum estimate to detect a

nonzero bispectrum at a specified false alarm rate oX is determined from the central chi-

square distribution. The threshold that would be applied to the magnitude squared of the

unnormalized bispectrum estimate is related to the normalized threshold by

Tun(Q) = NpN(f)pN(fIkpN(f,+) T(d) (4.7)
2L

56



It is shown in Hinich and Wilson (1990) that if a signal with bispectrum Bs(fj,fk)

and power spectrum PS(f) is processed in the presence of additive Gaussian noise with

power spectrum pN(f), the normalized bispectrum estimate of signal-plus-noise is

noncentral chi-square distributed with a noncentrality parameter given by
X~~k =2 s(fj,fk) ,(4.8)

N (1 +rl (fj))(l +r-1()( +r (fj+k))

where ys is the skewness function of the signal and r is the signal-to-noise power ratio:

pSr) (4.9)
pN(f

The probability of detection can be computed for the normalized bispectrum from the

noncentral chi-square distribution using the noncentrality parameter given by Eq. (4.8) and

the threshold T(a). For the magnitude squared of the unnormalized bispectrum, the
probability of detection can be calculated from the noncentral chi-square distribution by

evaluating the probability that a noncentral chi-square random variable with noncentrality

parameter given by Eq. (4.8) will exceed a threshold given by

T(a) (4.10)
(1+r(fj))(1+r(fk)) (1+r(fj+k)) (

where T(o) is the threshold for the normalized bispectrum.

From a detection point of view, the issue is how large the normalized bispectrum

statistic given by Eq. (4.4) has to be in order to confidently reject the Gaussian noise only
hypothesis and assert that a non-Gaussian signal is present. Shown in Fig. 4.1 is a plot of

the probability of false alarm as a function of the normalized bispectrum value based on the

central chi-square distribution function. The plot is approximately linear on a log false

alarm scale with a slope of 4.6 per decade. To operate at a false alarm rate of 10-3 , one

would reject the hypothesis that only noise is present (the normalized bispectrum statistic is

central chi-square distributed rather than noncentral chi-square distributed) for values of the

normalized bispectrum statistic that are 13.8 or larger. Since the mean value of the

normalized bispectrum statistic is equal to the noncentrality parameter, then the

noncentrality parameter must be 13.8 or larger to achieve detection at this false alarm rate.
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From Eq. (4.8) it can be seen that several factors contribute to the value of the
noncentrality parameter. One is the skewness function ys which is a characteristic of the

signal, one is the signal-to-noise ratio r which is a characteristic of the signal and noise

power levels, and the rest are characteristics of the processing. Given that a signal has a
non-zero skewness function, then there is a tradeoff between signal-to-noise ratio and
processing parameters that determines if the nonzero skewness will result in a sufficiently
large noncentrality parameter to allow its detection at a given false alarm rate. For small
values of the skewness function, the processing parameters and signal-to-noise ratio have

to be such that their product, given by Eq. (4.8), remains large enough to produce a
sufficiently large noncentrality parameter for detection. The noncentrality parameter has a
linear dependence on the number of temporal averages L and an approximately cubic

dependence on signal-to-noise ratio (for low signal-to-noise ratios). This implies that if the
signal-to-noise ratio decreases by a factor of 2 (3 dB), then it is necessary to increase the
number of temporal averages by a factor of 8 in order to retain the same level of

detectability.

Equation (4.8) demonstrates the essential relationship between signal

characteristics, noise characteristics, and processing parameters that determines tl-
detection performance of the bispectrum. To determine the viability of bispectrum
processing for detection of non-Gaussian or nonstationary signals, it is essential to know

the skewness function of signals of interest. Given a skewness function, the processing
parameters necessary to achieve detection as a function of signal-to-noise ratio can then be

determined. For the detection of narrowband harmonics, the skewness function is equal to
the DFT size N for perfectly coherent signals. It should also be noted that Eq. (4.8) is
relevant for "narrowband" detection, i.e., detection at a single point in the bispectrum. One
can also consider "broadband" detection in which the detection statistic is based on

bispectrum values over the entire principal domain (Hinich and Wilson, 1990).

Figure 4.2 shows a comparison of the detection performance of both the normalized

and unnormalized bispectrum to the power spectrum for detecting harmonics in Gaussian
noise. In this plot the three harmonics all have the same signal-to-noise ratio, which is

indicated on the horizontal axis of the plot. The number of averages used to generate these
results was 10. Because of the limited number of averages, the asymptotic statistics used

to produce these results are only approximate. However, these were used because the

expression for the exact distribution has not been derived. As can be seen, the
unnormalized bispectrum performs better than the power spectrum and the normalized
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bispectrum performs worse than the power spectrum. This general result was also seen
with the spectral correlation. Also shown are the measured probabilities of detection for the

unnormalized non-stationary bispectrum and for the power spectrum using the same data as
described for the spectral correlation comparison in Fig. 3.2. As can be seen, the

experimentally determined detection probabilities agree well with the predicted detection
probabilities, suggesting that the asymptotic non-stationary bispectrum statistics may be
adequate for averaging lengths as small as 10.
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